CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice.

نویسندگان

  • Julia Menke
  • Yasunori Iwata
  • Whitney A Rabacal
  • Ranu Basu
  • Yee G Yeung
  • Benjamin D Humphreys
  • Takashi Wada
  • Andreas Schwarting
  • E Richard Stanley
  • Vicki R Kelley
چکیده

Tubular damage following ischemic renal injury is often reversible, and tubular epithelial cell (TEC) proliferation is a hallmark of tubular repair. Macrophages have been implicated in tissue repair, and CSF-1, the principal macrophage growth factor, is expressed by TECs. We therefore tested the hypothesis that CSF-1 is central to tubular repair using an acute renal injury and repair model, ischemia/reperfusion (I/R). Mice injected with CSF-1 following I/R exhibited hastened healing, as evidenced by decreased tubular pathology, reduced fibrosis, and improved renal function. Notably, CSF-1 treatment increased TEC proliferation and reduced TEC apoptosis. Moreover, administration of a CSF-1 receptor-specific (CSF-1R-specific) antibody after I/R increased tubular pathology and fibrosis, suppressed TEC proliferation, and heightened TEC apoptosis. To determine the contribution of macrophages to CSF-1-dependent renal repair, we assessed the effect of CSF-1 on I/R in mice in which CD11b+ cells were genetically ablated and determined that macrophages only partially accounted for CSF-1-dependent tubular repair. We found that TECs expressed the CSF-1R and that this receptor was upregulated and coexpressed with CSF-1 in TECs following renal injury in mice and humans. Furthermore, signaling via the CSF-1R stimulated proliferation and reduced apoptosis in human and mouse TECs. Taken together, these data suggest that CSF-1 mediates renal repair by both a macrophage-dependent mechanism and direct autocrine/paracrine action on TECs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth.

Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Coexpression of the monocytic growth factor colony-stimulating factor (CSF)-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and antiapoptosis during regeneration of renal tubules. Here, we show that a CSF-1-dependent autocrine pathway is...

متن کامل

Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF.

Cisplatin, which is a broadly used anticancer drug, is widely known to induce acute renal failure as a result of renal tubular injury. This article examines whether G-CSF and/or M-CSF rescues mice from renal failure induced by cisplatin. BALB/c mice received intraperitoneal injections with or without G-CSF and/or M-CSF for 5 d (from day -5 to day -1). The day after the last injection of G-CSF a...

متن کامل

Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...

متن کامل

TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury

Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia-reperfusion injury (IRI), a common type of renal st...

متن کامل

Nrf2 signalling promotes ex vivo tubular epithelial cell survival and regeneration via murine double minute (MDM)-2.

BACKGROUND Tubular repair upon injury involves regeneration from either surviving tubular epithelial cells or from their surviving local progenitor cells; hence, compound screening with cell lines may be inadequate. Here, we demonstrate that the renal cell isolation procedure and subsequent outgrowth of tubular cells can mimic the renal injury phase and tubular cell regeneration from whichever ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 119 8  شماره 

صفحات  -

تاریخ انتشار 2009